报告题目:Affineisoperimetric inequalities for Orlicz affine and geominimal surface areas
报告人:叶德平(加拿大MemorialUniversity of Newfoundland)
时间:2015年7月8日下午2:30
地点:汇贤楼122教室
内容提要:The family ofaffine isoperimetric inequalities is to bound affine invariant functionals onconvex bodies from above and/or below in terms of volume. These inequalitiesare central to convex geometry and have many applications, such as, in analysisand even in quantum information theory.
Inthis talk, I will concentrate on the Orlicz affine and geominimal surfaceareas, which are nontrivial extensions of the classical affine and geominimalsurface areas. In particular, I will explain in details how to define theOrlicz affine and geominimal surface areas and also provide their relatedaffine isoperimetric inequalities.
专家简介:
美国Case Western Reserve University博士。师从国际著名数学家,美国数学会院士Dr. Szarek和国际著名数学家,美国数学会院士Dr. Werner。现任职于加拿大Memorial University of Newfoundland,并主持加拿大国家自然科学基金项目(NSERC)一项。美国数学会评论员。Comm. Math. Phys.,Int. Math. Res. Notices,J. Lond. Math.Soc., J. Math. Anal. Appl. 和J.Math. Phys. 等15个杂志的审稿人。
主要研究方向:凸几何分析, 几何和泛函不等式,随机矩阵,量子信息理论和统计学。 已在国际著名杂志(数学类,数学物理类,和统计类) 上发表论文近20篇。其中代表作(与G. Aubrun和S. Szarek合作)“Entanglement thresholds forrandom induced states” 发表在国际顶级数学杂志 Comm. Pure Appl.Math., 并且引起社会各界的广泛关注和讨论。best365体育官网登录入口关于该工作的新闻报道 “Einstein's 'spookyaction' common in large quantum systems”,“Quantumentanglement isn’t only spooky, you can’t avoid it” 和 “Quantum entanglement commonin large dimension” 曾经在互联网上广为传播 (google搜索最多时超过360000(36万)个搜索条)。