重庆国家应用数学中心 学院邮箱 English
首页学院概况党建思政师资队伍学科建设人才培养科学研究学生工作招生就业合作交流人才招聘
  学术报告
 合作办学 
 学术交流 
快速通道
 
相关链接
 
重师主页 科研系统 图书馆
教务系统 书记院长邮箱 OA系统
学术报告
当前位置: 首页 >> 旧栏目 >> 合作交流 >> 学术交流 >> 学术报告 >> 正文
学术报告——Zudi Lu教授(英国南安普顿大学)
2015-12-23 14:18     (点击: )

报告题目:Semiparametric Dynamic Portfolio Choice with Multiple Conditioning Variables

报告人:英国南安普顿大学教授Zudi Lu

 

时间:20151224日  下午1:30

 

地点:汇贤楼122教室

个人简介:

ZudiLu is a Professor/Chair in Statistics, in Mathematical Sciences Academic Unitand Southampton Statistical Sciences Research Institute (S3RI) at University ofSouthampton, UK. His research interest includes nonlinear financial time seriesmodelling and financial statistics / econometrics; statistical inference &computation for nonlinear spatial/temporal modelling and prediction; appliedtemporal/spatial modelling for financial, environmental and socioeconomicrisks; non-parametric/semi-parametric modelling and statistical learning.

 

报告摘要:

Dynamicportfolio choice has been a central and essential objective for investors inactive asset management. In this paper, we study the dynamic portfolio choicewith multiple conditioning variables, where the dimension of the conditioningvariables can be either fixed or diverging to infinity at certain polynomialrate of the sample size. We propose a novel data-driven method to estimate theoptimal portfolio choice, motivated by the model averaging marginal regressionapproach suggested by Li, Linton and Lu (2015, Journal of Econometrics). Morespecifically, in order to avoid the curse of dimensionality associated with themultivariate nonparametric regression problem and to make it practicallyimplementable, we first estimate the marginal optimal portfolio choice bymaximising the conditional utility function for each univariate conditioningvariable, and then construct the joint dynamic optimal portfolio through theweighted average of the marginal optimal portfolio across all the conditioningvariables. Under some regularity conditions, we establish the large sampleproperties for the developed portfolio choice procedure. Both the simulationstudy and empirical application well demonstrate the finite-sample performanceof the proposed methodology.

Joint work with Jia Chen,Degui Li and Oliver Linton

关闭窗口

版权所有:best365体育官网登录入口 - 365wm完美体育官网  地址:重庆市沙坪坝区大学城中路37号 汇贤楼
网站:www.xinsenhj.com  邮编:401331

Baidu
sogou