报告题目:几何双不变K-理论和K-理论虚拟基本类
报告人:王百灵
时间:2019年12月6日 11:20-12:00
地点:best365体育官网登录入口221会议室
主办单位:best365体育官网登录入口
报告摘要
K-理论和相应的同调理论一直在几何,拓扑,数学物理中有重要的应用。受此启发,给定两个光滑流行 X和Y,我将介绍一种双变的同调/上同调理论,记作 KK(X, Y)。
当X是一个点时,KK(X,Y)同构于 Y上的 K- 理论K(Y)。 当Y是一个点时,KK(X,Y)同构于 X上的K-同调理论。 任何KK(X, Y)的元素自然实现了K(X)到K(Y)之间的同态。作为应用之一,Gromov-Witten 和HamiltonianGromov-Witten moduli spaces 可以解释为这种双变的同调/上同调理论的元素。此框架可以用来定义Gromov-Witten 和Hamiltonian Gromov-Witten 下的K-理论不变量。 这个报告的内容是基于和陈柏辉-胡建勋合作研究的结果。
专家简介
王百灵,澳大利亚国立大学副教授。1998 年 4月毕业于澳大利亚阿德莱德大学并获得博士学位。毕业先后在德国波恩马普所,法国高等科学研究所, 苏黎士大学做博士后和访问学者。2005年至今在澳大利亚国立大学工作。
研究主要集中于利用规范场理论、量子场理论和弦论等发展几何与拓扑不变量的数学问题。在以下几个方面做了系列工作:规范场理论在低维拓扑中的拓扑不变量、twisted K-同调和twisted指标理论、Gromov-Witten模空间和哈密尔顿Gromov-Witten模空间的K-理论。