重庆国家应用数学中心 学院邮箱 English
首页学院概况党建思政师资队伍学科建设人才培养科学研究学生工作招生就业合作交流人才招聘
  学术报告
 合作办学 
 学术交流 
快速通道
 
相关链接
 
重师主页 科研系统 图书馆
教务系统 书记院长邮箱 OA系统
学术报告
当前位置: 首页 >> 旧栏目 >> 合作交流 >> 学术交流 >> 学术报告 >> 正文
学术报告——杨宇宁教授(广西大学)
2022-05-19 08:54     (点击: )


报告名称:Numerical Approaches for Computing C-Eigenvalues of a Piezoelectric-Type Tensor

主讲人:杨宇宁 教授

邀请人:莫长鑫 讲师

时间:2022524日   16:00

地点:腾讯会议(ID840 427 857

主办单位:best365体育官网登录入口


报告摘要

A piezoelectric-type tensor is of order three which is symmetric with respect to its last two indices. The largest C-eigenvalue of a piezoelectric-type tensor determines the highest piezoelectric coupling constant. We introduce two numerical approaches for computing C-eigenvalues: an iterative approach and a convex relaxation approach.

For the first approach, we first introduce partial maximizers and strongly partial maximizers, which are subsets of C-eigenvectors. Then a shifted eigenvalue decomposition method is proposed, which globally converges without any assumption. When the shifted parameter is small enough, the convergent limit is a partial maximizer, and for a special class of piezoelectric-type tensors, the limit is a strongly partial maximizer. Linear convergence is then established under reasonable assumptions. In addition, we introduce an approximation algorithm and provide its worst-case lower bound. Numerical experiments show the efficiency of the proposed method.

For the second approach, we first show that how to derive the convex relaxations via a newly introduce equivalence property. Such relaxations define tigher norms than usually used ones. Several insights are provided for the tightness issues of the convex relaxations. The spectral property of the dual variable, in particular, determines the tightness. When the convex relaxations are not tight, a theoretical guaranteed approximation algorithm is proposed to extract a feasible approximation solution. We provide several types of tensors to justify the tightness of the convex relaxations. In case that the relaxations are not tight, their optimal values, serving as upper bounds, are still tighter than those in the literature.


专家简介

杨宇宁,20032013年本硕博就读及毕业于南开大学best365体育官网登录入口。2013 2017 年于比利时鲁汶大学从事博士后研究。2017 年入职广西大学数学与信息科学学院。2018 年入选国家海外高层次人才青年项目,同年任教授。研究领域为张量计算和优化。发表 SCI 论文 30 余篇,发表期刊包括 SIAM J. Optim., SIAM J. Matrix Anal. Appl., J. Mach. Learn. Res., IEEE Trans. Neural Netw. Learn. Syst.等。著专著一部。主持国家自然科学基金面上基金、青年基金(已结题)各一项,主持教育部霍英东青年教师基金一项。现担任中国运筹学会数学规划分会青年理事,中国工业与应用数学学会理事,广西运筹学会理事,广西大学学术委员会委员。

 

关闭窗口

版权所有:best365体育官网登录入口 - 365wm完美体育官网  地址:重庆市沙坪坝区大学城中路37号 汇贤楼
网站:www.xinsenhj.com  邮编:401331

Baidu
sogou