重庆国家应用数学中心 学院邮箱 English
首页学院概况党建思政师资队伍学科建设人才培养科学研究学生工作招生就业合作交流人才招聘
  学术报告
 合作办学 
 学术交流 
快速通道
 
相关链接
 
重师主页 科研系统 图书馆
教务系统 书记院长邮箱 OA系统
学术报告
当前位置: 首页 >> 旧栏目 >> 合作交流 >> 学术交流 >> 学术报告 >> 正文
学术报告——李寒宇教授(重庆大学)
2022-12-26 09:41     (点击: )


报告名称:Practical algorithms for tensor ring decomposition

主讲人:李寒宇 教授

邀请人:莫长鑫 讲师

时间:20221230   14:30

地点:腾讯会议(414 886 708

主办单位:best365体育官网登录入口


报告摘要

Based on sketching techniques, we first propose two randomized algorithms for tensor ring (TR) decomposition. Specifically, on the basis of defining new tensor products and investigating their properties, the two algorithms are devised by applying the Kronecker sub-sampled randomized Fourier transform and TensorSketch to the alternative least squares (ALS) subproblems from TR decomposition. Considering that, in all the existing algorithms and our new randomized algorithms, the ALS subproblems have to be solved directly eventually, which may suffer from the intermediate data explosion issue, we then propose two strategies to tackle the computation of the subproblems. The first one is used to simplify the calculation of the coefficient matrices of the normal equations for the ALS subproblems, and the other one is to stabilize the ALS subproblems by QR factorizations on TR-cores. They can take full advantage of the structure of the coefficient matrices of the subproblems. Three corresponding algorithms are devised. Extensive numerical experiments on synthetic and real data are presented to test our methods.

 

专家简介

李寒宇,博士、重庆大学教授、博士生导师。主要从事随机数值代数、统计计算、张量回归等方面的研究。先后主持国家自然科学基金项目、重庆市自然科学基金项目多项,在国际知名杂志发表学术论文多篇。

关闭窗口

版权所有:best365体育官网登录入口 - 365wm完美体育官网  地址:重庆市沙坪坝区大学城中路37号 汇贤楼
网站:www.xinsenhj.com  邮编:401331

Baidu
sogou