1. Guo Chaohui(郭朝会) and Li Jialiang*. Homogeneity and Structure Identification in Semiparametric Factor Models. Journal of Business & Economic Statistic(计量经济学顶级期刊),2022,40:1, 408–422 (SCI).
2. Guo Chaohui(郭朝会), Lv Jing*, Yang Hu, Tu Jingwen and Tian Chenxiao. Semiparametric Model Averaging for Ultrahigh-Dimensional Conditional Quantile Prediction. Acta Mathematica Sinica, English Series, 2023, 39, 1171–1202 (SCI).
3. Guo Chaohui(郭朝会), Zhang Wenyang*. Model Averaging based Semiparametric Modelling for Conditional Quantile Prediction. SCIENTIA SINICA Mathematica, 2023, accepted, https://doi.org/10.1007/s11425-022-2205-1, (SCI).
4. Guo Chaohui(郭朝会), Lv Jing* and Wu Jibo. Composite quantile regression for ultra-high dimensional semiparametric model averaging. Computational Statistics & Data Analysis,2021,160:107231 (SCI).
5. Tu, Jingwen, Yang, Hu, Guo Chaohui*(郭朝会) Lv Jing, 2021. Model averaging marginal regression for high dimensional conditional quantile prediction. Statistical Papers, 62:2661–2689 (SCI).
6. Lv Jing, Guo Chaohui*(郭朝会),Wu Jibo, 2019. Subject-wise empirical likelihood inference for robust joint mean-covariance model with longitudinal data. Statistics and Its Interface, 12: 617–630. (SCI)
7. Lv Jing, Guo Chaohui*(郭朝会), Wu Jibo, 2019. Smoothed empirical likelihood inference via the modified Cholesky decomposition for quantile varying coefficient models with longitudinal data. TEST, 28:999–1032. (SCI)
8. Lv Jing, Guo Chaohui*(郭朝会), 2019. Quantile estimations via modified Cholesky decomposition for longitudinal single-index models. Annals of the institute of statistical mathematics, 71:1163–1199. (SCI)
9. Lv Jing, Guo Chaohui*(郭朝会), Li Tingting,Hao Yuanyuan, Pan Xiaolin, 2018. Adaptive robust estimation in joint mean–covariance regression model for bivariate longitudinal data [J]. Statistics, 52:64-83. (SCI)
10.吕晶,郭朝会*,杨虎,李婷婷,2018. 纵向数据的有效秩推断基于修正的Cholesky分解. 数学学报中文版,61: 549-568.
11. Guo Chaohui*(郭朝会), Yang Hu and Lv Jing. Two step estimations for a single-index varying-coefficient model with longitudinal data. Statistical Papers, 2018, 59:957–983 (SCI).
12.Lv Jing, Guo Chaohui*(郭朝会), Yang Hu, Li Yalian, 2017. A moving average Cholesky factor model in covariance modeling for composite quantile regression with longitudinal data [J]. Computational Statistics and Data Analysis, 112: 129-144. (SCI)
13.Lv Jing, Guo Chaohui*(郭朝会), 2017. Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data [J]. Computational Statistics, 32: 947-975. (SCI)
14.Guo Chaohui(郭朝会), Yang Hu, Lv Jing*, 2017. Robust variable selection in high-dimensional varying coefficient models based on weighted composite quantile regression. STATISTICAL PAPERS, 58(4): 1009-1033. (SCI)
15.Guo Chaohui(郭朝会), Yang Hu, Lv Jing*, 2017. Robust variable selection for generalized linear models with a diverging number of parameters. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 46(6): 2967-2981. (SCI)
16.Guo Chaohui(郭朝会), Yang Hu, Lv Jing*, Wu, Jibo, 2016. Joint estimation for single index mean-covariance models with longitudinal data. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 45(4): 526-543. (SCI)
17.Guo Chaohui*(郭朝会), Yang Hu, Lv Jing, 2016. Generalized varying index coefficient models. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 300(1): 1-17. (SCI)
18.Yang Hu, Guo Chaohui *(郭朝会), Lv Jing, 2016. Variable selection for generalized varying coefficient models with longitudinal data. STATISTICAL PAPERS, 57:115–132. (SCI)
19.Yang Hu, Guo Chaohui *(郭朝会), Lv Jing, 2015.SCAD penalized rank regression with a diverging numberof parameters. Journal of Multivariate Analysis, 133: 321–333. (SCI)
20.Yang Hu, Guo Chaohui *(郭朝会), Lv Jing, 2014. A robust and efficient estimation method for single-index varying-coefficient models. Statistics and Probability Letters, 94 :119–127.(SCI)