学术报告
当前位置: 首页 >> 合作交流 >> 学术交流 >> 学术报告 >> 正文
学术报告——喻高航教授(杭州电子科技大学)


报告名称:Efficient Randomized Algorithms for Low-Rank Approximation of Large Tensors

主讲人:喻高航 教授

邀请人:宋义生 教授

时间:2023616日   16:30

地点:best365体育官网登录入口221学术报告厅

主办单位:best365体育官网登录入口


报告摘要

Low-rank approximation of tensors has been widely used in high-dimensional data analysis. It usually involves singular value decomposition (SVD) of large-scale matrices with high computational complexity. Sketching is an effective data compression and dimensionality reduction technique applied to the low-rank approximation of large matrices. This talk presents some efficient randomized algorithms for low-rank tensor approximation  based on T-product, Tucker and Tensor Train decomposition, with rigorous error-bound analysis. Numerical experiments on synthetic and real-world tensor data demonstrate the competitive performance of the proposed algorithms.


专家简介

喻高航,杭州电子科技大学“西湖学者”特聘教授、博士生导师,主要从事张量数据分析、大规模优化计算及其在机器学习、图像处理与医学影像中的应用研究。先后在SIAM Journal on Imaging Sciences, International Journal of Robust and Nonlinear ControlIEEE Signal Processing LettersJournal of Mathematical Imaging and Vision等国际期刊上发表40余篇SCI论文,先后主持5项国家自然科学基金、1项教育部新世纪优秀人才支持计划项目和1项浙江省自然科学基金重大项目,有多篇论文入选ESI高被引榜单。现任任国际SCI学术期刊Intelligent Automation & Soft Computing 的期刊编委;国际学术期刊Statistics, Optimization and Information Computing执行编委(Coordinating Editor)。

Baidu
sogou